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Abstract. Convex envelopes of multilinear functions on a unit hypercube are polyhedral. This well-
known fact makes the convex envelope approximation very useful in the linearization of non-linear
0–1 programming problems and in global bilinear optimization. This paper presents necessary and
sufficient conditions for a convex envelope to be a polyhedral function and illustrates how these
conditions may be used in constructing of convex envelopes. The main result of the paper is a simple
analytical formula, which defines some faces of the convex envelope of a multilinear function. This
formula proves to be a generalization of the well known convex envelope formula for multilinear
monomial functions.
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Introduction

A great deal of effort has been devoted to the field of finding tight convex piecewise
linear approximation of multilinear functions, and in applying these approximations
within the context of nonlinear programming [1–10, 14, 16, 17]. Most of the
efforts were devoted to the case of multilinear functions (1) over the hypercube
Un = [0; 1]n:

f(x) =
X
j2N

�j
Y
i2Ij

xi; (1)

where Ij � 1; . . . ; n;N = N+ [N� : �j > 08j 2 N+ and �j < 08j 2 N� andQ
means the product. It is a well known fact [2], that any 0–1 problem may be

rewritten in multilinear form, and, thus any opportunity to construct tighter linear
underestimates?? of multilinear functions may lead to more effective algorithms in
global optimization of 0–1 problems. In addition, linear underestimating functions
are of primary importance in global nonconvex bilinear programming [1,10,14,17].

? A previous version of this paper was presented at XV Int. Symposium on Mathematical
Programming.
?? Function 	(x) is said to be a linear (or polyhedral) underestimate of function f(x) on set P

if f(x) � 	(x)8x 2 P and 	(x) is made of a finite number of affine functions hj(x) : 	(x) =
maxfhj(x)jj = 1; :::Jg.

Firstproof: PIPS No.: 120787 MATHKAP
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426 ANATOLIY D. RIKUN

The most common method of linearization of multilinear functions is based
on the convex envelope? formula for the simplest monomial functions '(x) =

x�1 � � �
� xn and �'(x) on Un:

conv'(x) = max
n

0;
X

xi � n+ 1
o
; (2)

convf�'(x)g = maxf�xiji = 1; . . . ; ng : (3)

Thus, in ‘standard linearization’ fS(x) (as it was called in [4,9]) each monomial
term in (1) is changed by the corresponding envelope (2) or (3):

f s(x) =
X
j2N+

aj max

8<
:0;

X
i2N+

xj � jIj � 1j

9=
;+

X
j2N

�

aj maxf�xj jj 2 Ijg

(4)

Unfortunately, the standard approach often leads to very poor approximation and,
in addition, it needs many more hyperplanes than convex envelope function does.
To illustrate this fact, let us consider the following simple function of n variables:

'(x) =

0
@X
i6=j

xixj

1
A�2 : (5)

As it will be shown further, the convex envelope of this function on Un is:

conv'(x) = max

(
0;k�1C1

nX
1

xi �k C2jk = 2; . . . ; n

)
: (6)

The standard approach leads to the approximation:

's(x) = 0:5
X
i6=j

maxf0; xi + xj � 1g : (7)

The precise error bounds for these two approaches are

maxf'(x) � 's(x)jx 2 Un � (n2 � n)=8 ;

maxf'(x) � conv'(x)jx 2 Un � (n� 1)=8 :

? Convex envelope convP	(x) of a function 	(x) on a closed convex set P is, by definition,
the tightest convex underestimating function of 	(x) on P [15]. Convex envelope is said to be
a polyhedral function [15] if it is made of a finite set of lower bounding affine functions hj(x) :
convP	(x) = maxfhj(x)jj = 1; :::Jg. We will refer to each functions hi(x) from which the convex
envelope is made of as to elements of convex envelope: i.e. affine function h(x) is an element of
convP	(x) if there exists an open set O � dom	 such that h(x) = convP	(x)8x 2 O.
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A CONVEX ENVELOPE FORMULA FOR MULTILINEAR FUNCTIONS 427

Thus, the standard approach leads to poorer approximation and, at the same
time, it needs many more hyperplanes for its realization as compared to convex
envelope?.

In the case of bilinear programming problems, there exists another very impor-
tant reason for using convex envelopes in branch and bound type methods. Let P be
a hyperparallelepiped and convp	(x) has been found. Let in the branch-and-bound
algorithm the set P be divided into subsets Q and R with inequalities xi � �i and
�i � xi respectively. In this case the knowledge of convp	(x) allows easily to
obtain the functions convQ	(x) and convR	(x), because all the elements of both
convQ	(x) and convR	(x) may be obtained from the elements of convP	(x)
by linear transformation. Thus, the difficult problem of calculating the convex
envelope needs to be solved only once.

Unfortunately, finding the convex envelope of a multilinear function on a unit
hypercube is a NP-hard problem [5] and convex envelope itself may be made of an
extremely large number of elements??. Nevertheless, as the example above illus-
trates, the use of convex envelopes may give significant benefits both in accuracy
and in the number of linear functions.

In this paper we will consider the following topics:
1. The necessary and sufficient conditions for the polyhedrality of convex envelopes.
These conditions may be helpful to check if a polyhedral function coincides with
the convex envelope. In particular, I. Crama in his recent paper [4] analyzed situ-
ations when the standard approach leads to the convex envelopes for multilinear
0–1 functions on Un. Our results generalize his main result for the case of arbitrary
multilinear functions on arbitrary convex polytope.
2. An analytical formula, which sometimes help to obtain elements of convex
envelope of general multilinear functions. In particular, (2) and (3) may be easily
obtained from this formula.

1. Necessary and Sufficient Conditions of Polyhedrality of Convex Envelope

Let f(x) be a lower semicontinuous function on a compact polytope P � Rn. For
the sake of convenience, in this section we will assume that f(x) < 18x 2 P ,
and f(x) =18x 62 P .

It may be helpful to use convPf(x) to linearize some nonlinear function f(x)
only in the case, when convPf(x) is a polyhedral function, i.e. when convPf(x)
is made of a finite set of affine functions hj(x): convPf(x) = maxfhj(x)jj 2 Jg.

Being a polyhedral function, convPf(x) may be defined by its values at a finite
set of points, x 2 P . On the other hand, by definition, hj(x) � f(x)8x 2 P and it
is always possible to consider only such functions hj which coincide with f(x) in

? Note, that the first-level of recently introduced reformulation-linearization approach [17] also
leads to approximation 's for function (5), while higher level approximations from this methods can
lead to tighter envelopes.
?? In fact, even much more simple problems of minimization of a bilinear function with one

negative eigenvalue prove to be NP-hard [13].
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Figure 1.1. Graph of a function with a polyhedral convex envelope, X(f) = vertP = x1[x2.

at least n+ 1 affinely independent points of P . Thus, the question arises: how to
determine the minimal (by inclusion) finite subset X(f) � P so that convPf(x)
would be completely defined by its values f(x), at x 2 X(f)?

It follows from the Caratheodory’s theorem, that f(x) = convP f(x) at each
vertex x of polytope P (from now on we denote the set of all vertices as vertP ).
Thus, it is natural to analyze such sets X(f) which contain vertP . The main
result of this section is that for smooth functions which have polyhedral convex
envelopes, vertP = X(f), and, hence convPf(x) of a smooth function f(x) on
a polytope P is completely defined by the values of this function at the extreme
points of this polytope.

Now let us introduce some definitions; as usual, if ' is a real-valued function
' : x! Rn, epi(') denotes its epigraph:

epi(')=f(z; x)jz � '(x); x 2 dom(')g; where dom(')=fxj'(x) <1g:

DEFINITION 1.1. Let f(x) be a real valued lower semicontinuous function,
defined on a convex set P , dom(f) = P . Set X(f) is said to be a generating
set of this function, if

X(f) = fxj(x; f(x)) 2 vert(epi(convP f(x))g (8)

Thus, the generating set of a function f(x) is the set of all x-coordinates of all
vertices of the epigraph of the convex envelope of this function.

To illustrate the difference in generating sets of smooth functions which have
polyhedral and non-polyhedral convex envelopes, let us consider a picture for the
1-dimensional case (both the convex envelope functions and the generating sets are
typed in bold). As one can see from Figure 1.1, the generating set of the function,
which has a polyhedral convex envelope coincides with the vertP = x1 [ x2.
In contrast with this, the nonpolyhedral convex envelope of smooth function has
smooth nonlinear parts and its generating set contains the nonempty open subset

jogo315.tex; 9/09/1997; 15:46; v.6; p.4



A CONVEX ENVELOPE FORMULA FOR MULTILINEAR FUNCTIONS 429

Figure 1.2. Graph of a function with nonpolyhedral convex envelope, X(f) = X1 [ x2;
intX1 6= ;.

X1 (see Figure 1.2). The same is true in the general case as it follows from Theorem
1.1.

DEFINITION 1.2. Function f : P ! Rn is said to be continuously differentiable
on convex polytope P if:
1. f(x) is a continuous function on P .
2. for eachx 2 PnvertP and eachFx – the highest dimensional face ofP containing
x, function f(x) is continuously differentiable on riFx (where symbol riQ denotes
the relative interior of set Q [15]).

THEOREM 1.1. Let function f(x) be continuously differentiable on a convex
compact polytope P . The convex envelope of this function on P is a polyhedral
function if and only if its generating set X(f) coincides with the set of vertices of
P :

X(f) = vertP (9)

REMARK 1.1. Because of convP f(x) = f(x)8x 2 vertP it is possible to give
another equivalent formulation of the theorem. Let us define function f1 such
that f1(x) = f(x) if x 2 vertP and f1(x) = 1 otherwise. Thus, the necessary
and sufficient condition of the polyhedrality of the function convPf(x) (9) may be
rewritten in the form:

convP f(x) = convP f
1(x) 8x 2 P (10)
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430 ANATOLIY D. RIKUN

where convP f1(x) denotes the convex envelopes of the function f1(x). The
equivalence of (9) and (10) follows from the self-evident fact that the generating
set of f1 coincides with the vertP : X(f1) = vertP .

Proof. The sufficiency is evident from the finiteness of the set of vertices of the
polytope P .

To prove the necessity, let us assume the opposite. In this case there exists
x0 2 X(f)nvertP . Let us consider first the case when x0 is an internal point of
P : x0 2 intP . Since x0 belongs to the generating set but is not a vertex, there
exists m > 1 different elements of convP f(x), H1; . . . ;Hm such that Hi(x) =
hhi; x � x0i + f(x0)8i = 1; . . . ;m; (hv; ui denotes scalar product of the vectors
v; u) By definition of convex envelope,Hi(x) � f(x)8x 2 P , 8i. Thus, each Hi

i = 1; . . . ;m is a support hyperplane and hi is a subgradient of the function f(x)
at x0. Because f(x) is a differentiable function at x0 its subgradients must coincide
with its gradient [12]: i.e. h1 = � � � = hm = @f(x0)=@x. This equality contradicts
to the fact that all Hi(x) are different.

To complete the proof let us show that the same considerations are true in the
case when x0 62 intP. In this case let us consider F – the face of minimal dimension
containing x0 : x0 2 riF. Let us consider also the function fF defined on aff(riF )
– the affine hull of riF : fF (x) = f(x)8x 2 aff(riF ). All the conditions of
the theorem are fulfilled for fF instead of f , and for the polytope F instead of
P and, besides, convP f(x) = convFfF (x); 8x 2 F ?. Using this we can apply
the speculation mentioned above to the polytope F and the function fF defined
in the space aff(riF ), and to the point x0, which is an interior point of F in the
aff(riF ). Thus, we obtain the contradiction in the case, when x0 62 intP as well.
This contradiction completes the proof of the theorem. �

One aspect which makes finding the convex envelope hard is that the convex
envelope of the sum of functions is not always equal to the sum of the convex
envelopes of the addends (compare conv'(x) and's(x) for function (5)). Theorem
1.1 gives the criterion when the convex envelopes of the addends is equal to the
polyhedral convex envelope of their sum.

COROLLARY 1.1. Let functions fi(x) be continuously differentiable on convex
compact polytope P, dom(fi) = P 8i = 1; . . . ;m and f0(x) =

Pm
1 fi(x). Let the

convex envelopes of all of these m functions ffi(x)gmi=1 and their sum f0(x) be
polyhedral. Then

convP

 
mX
1

fi(x)

!
=

mX
1

convP fi(x) (11)

? This equality follows from the Caratheodory’s theorem.
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if and only if the generating set of
P

m
1 convPfi(x) coincides with the set of

vertices of P:

X

 
mX
1

convP fi(x)

!
= vertP : (12)

REMARK 1.2. Corollary 1 gives a generalization of Crama’s criterion of the equi-
valence between the standard and the convex envelope approaches in linearization
of 0–1 multilinear function [4].

To use Corollary 1.1 one should check if the convex envelope of sum of the
functions is a polyhedral one. The following statement gives a sufficient condition
of polyhedrality of the convex envelope.

THEOREM 1.2. Let f(x) be a lower semicontinuous function on a compact poly-
tope P and for every point x0 which is not a vertex there exists a line lx such, that
f(x) is a concave function in a neighborhood of x0 on a segment (lx \ P ) and
x0 2 ri[lx \ P ]. Then convP f(x) is a polyhedral function and the equality (10) is
true.

Proof. Let us analyze the generating set X(f) of this function. Let there exist
x0 2 X(f)nvertP. In this case it is possible to find two other points x1; x2 :
x1; x2 2 [lx \ P ] and f(x0) � (f(x1) + f(x2))=2, x0 = (x1 + x2)=2 because
f(x) is concave on [x1; x2]. Thus, (x0; f(x0)) 62 vert(epi(convPf)) and, as a result
x0 62 X(f). �

REMARK 1.3. Let L : P ! R1 be a general multilinear function defined on
the Cartesian product of the polytopes, P = P1; . . . ; Pk, Pi 2 Rni i.e. function
L(x0

1; . . . ; xi; . . .x0
k
) is linear function of ni-dimensional vector xi if all the other

k � 1 vector arguments x0
1; . . . ; x0

k
are fixed. It follows from the Theorem 1.2 that

convPL(x) is a polyhedral function. To prove this fact one can consider any line
lx = fxjxj = x0

j ; j 6= i : xi 62 vert(Pi) and xi = x0
i + t�g, where t 2 R1,

� 2 Fx � Pi, and Fx being facet of Pi which contains x0
i .

REMARK 1.4. It is interesting to note that Theorem 1.2 may be reversed. Namely,
let f(x) be twice continuously differentiable on P. It is easy to prove that if
x 2 X(f) and Fx be the biggest facet of P containing x : x 2 Fx, then the Hessian
jj@2f(x)=@x2jj must be nonnegatively definite on Fx.

This simple fact may be very useful in constructing convex envelopes. In
particular, some formulas for the non-polyhedral convex envelopes presented in
[16] could be obtained using this idea. As another example, let us find convex
envelope of f(x) = x�1 x2 . . .xn, P = Un. If � > 1, the function f(x) is positively
definite on the one face of P : x2 = � � � = xn = 1 and thus,X(f) = fxj0 < x1 <
1;xj = 1; j = 2; . . . ; ng [ vertUn. The application of Caratheodory’s theorem to
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X(f) leads to the following formula [14]:

convP f(x) =

 
nX
i=1

xi � n+ 1

!�� 
nX
i=2

xi � n+ 2

!��1

if �xi � n+ 1 � 0 and convP f(x) = 0 otherwise:

This formula coincides with (2) if � = 1.

REMARK 1.5. It should be noted that the function f(x) in the theorem need not
be continuous as well and Theorem 1.2 may be applied, for example, in the case
of fixed charge problem.

In the future we will need a criterion to check if a specific affine function hi(x)
is an element of convPf(x).

LEMMA 1.1. Let f(x) be a continuously differentiable function on n-dimensional
convex polytope P � P n, and convPf(x) be a polyhedral function. Let h(x) be
an affine function and there exist n+ 1 linearly independent vertices of P : �i; i =
1; . . .n+ 1 such that

h(�i) = f(�i); i = 1; . . . ; n+ 1 (13)

and

h(x) � f(x); 8x 2 vertP (14)

then h(x) is an element of the convPf(x) and h(x) = convSf(x) = convP f(x)
8x 2 S, where S = convf�iji = 1; . . . ; n+ 1g.

Proof. Lemma 1.1 follows immediately from Caratheodory’s theorem and
equality (10). More specifically, let x0 2 S. From Caratheodory’s theorem we
have:

convP f(x
0) = min

(
n+1X
i=1

�if(x
i)

����x0 =
n+1X
i=1

�ix
i;

n+1X
i=1

�i=1; xi 2 P; �i�0; 8i=1; . . . ; n+1

)
:

(15)

It follows from (10) that the minimum is achieved at some vertices of P : there
exist n+ 1 points �j 2 vertP and nonnegative �i so that

convP f(x
0) =

n+1X
i=1

�if(�
i):

Because h(x) is an affine function,

h(x0) =
n+1X
i=1

�ih(�
i)
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and it follows from (14) that h(x0) � convP f(x0)8x0 2 P . On the other hand,
because of x0 2 S, there exists �i � 0 :

P
�i = 1; x0 =

P
�i�i. Thus,

h(x0) = h(
P
�i�i) =

P
�ih(�i) =

P
�if(�i) � convPf(x0)8x0 2 S, and thus,

h(x0) = convPf(x0). �

Lemma 1.1 provides a way to check if a specific affine function is an element of
the convex envelope. For example, it is easy to check that each function hk(x) =
k�1C1

Pn
1 xi � kC2 from (6) satisfies all conditions of the lemma and, thus it is

an element of conv'(x). The following statement gives a criterion of the equality
of a polyhedral function to a convex envelope of a given function.

THEOREM 1.3. Let function f(x) be continuously differentiable on convex com-
pact polytope P and its convex envelope convP f(x) be a polyhedral function.
Let there exist a collection of m affine function hi(x) so that each function
hi fills the conditions of Lemma 1.1. Then function convP f(x) coincides with
 (x) = maxfhi(x)ji = 1; . . . ;m;x 2 Pg,  (x) = 18x 62 P if and only if: �)
The generating set of the function  (x) coincides with vertP. �) For each vertex
� 2 vertP there exists i 2 f1; . . . ;mg such that hi(�) = f(�).

Proof. The necessary part of the theorem is self-evident. To prove the suf-
ficiency, note that it follows from inequality (14) and the condition ‘�’ that
 (�) = f(�)8� 2 vertP. From condition ‘�’ of the theorem and equality (10) one
can conclude that vert(epi( )) = vert(epi(convP (f))):Because any closed convex
set is completely defined by its extreme points,  (x) = convP f(x)8x 2 P . �

Now we will use Theorem 1.3 to prove (6). Let us consider the following function
on un : 'm(x) =

P
1�j1<���<jm�n xj1 . . .xjm where 1 < m < n. We will prove

that:

conv'm(x) = max

(
0;k�1Cm�1

nX
1

xi � (m� 1)kCmjk = m; . . . ; n

)
:

Note, that this formula coincides with (6) if m = 2, because '2(x) = '(x) by
definition. We will check the condition of Lemma 1.1 for the elements of conv'm:
hm1(x) = 0; hk(x) =k�1 Cm�1

Pn
1 xi � (m� 1)kCm where k = m; . . . ; n. Let

x 2 vertUn and nx =
P
xi. Because hk(x) = nx �k�1 Cm�1 � (m � 1)kCm

and 'm(x) = nxCm, hk(x) < '(x) if nx < k � 1 or nx > k + 1. If nx = k or
nx = k � 1, hk(x) = 'm(x) and it is easy to check that there are n + 1 linearly
independent points among these vertices. It follows also from this consideration
that condition ‘�’ is fulfilled. To check condition ‘�’ we prove that any system
of equations: hk(x) = hl(x); xi = 1; xj = 0; k; l; i; j 2 1; . . . ; n may have only
solutions made of 0’s and 1’s. After collecting similar terms we will have only one

jogo315.tex; 9/09/1997; 15:46; v.6; p.9



434 ANATOLIY D. RIKUN

equation
P
xi = nx and all the other nx � 1 equations will be of the form xi = 1

or xj = 0. �

Corollary 1.1 gives a general criterion of when the standard approach leads to the
precise result. But, sometimes it is difficult to check if the condition (12) is fulfilled.
The following Theorem 1.4 gives a condition sufficient to establish that the convex
envelope of the sum of functions is equal to the sum of the convex envelopes of
the addends.

THEOREM 1.4. Let P be a Cartesian product of polytopes,P = P0�P1� . . .Pk,
Pi 2 R

ni , and let fi(x0; xi) be a continuous function defined onP0�Pi i = 1; :::k.
If each fi(x0; xi) is a concave function of x0 when xi is fixed and P0 is a simplex?,
then

convP

 
mX
1

fi(x0; xi)

!
=

mX
1

convfi(x0; xi) : (16)

Proof. Let x0 2 P0 and x0� enumerates the vertices of P0, � = 1; . . . ; n0 + 1.
There exist nonnegative values �� � 0 :

P
� ��x0� = x0;

P
� �� = 1 and

vector � = f��g is uniquely determined by the vertices fx0�g. Using concavity
of fi(x0; xi) of x0, it is easy to prove that:

convfi(x0; xi) =

n0+1X
0

��convfi(x0� ; xi) : (17)

On the other hand,
Pm

1 fi(x0; xi) is a convex function of x0 as well, and as a
result:

convP

 
mX
1

fi(x0; xi)

!
=

n0+1X
0

��

mX
1

conv fi(x0� ; xi) : (18)

Because fi(x0� ; xi) are separable functions, conv(
Pm

1 fi(x0� ; xi)) =
Pm

1
convfi(x0� ; xi) [10]. Thus, summation (17) over i leads to the equality (18). �

REMARK 1.6. Theorem 1.4 generalizes a well known results [10] giving a con-
dition sufficient to ensure that the convex envelope of a set of functions equals
to the sum of their convex envelopes in the separable case. In the separable case
function fi(x0; xi) depend only on xi and not on x0. Note, that the requirement
that P0 be a simplex is essential in this proof, and the conclusion does not follow
if jvertP0j > n0 + 1. In slightly different form this theorem was first presented in
[14].

? I.e. the number of vertices of the polytope P0 is n0 + 1.
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REMARK 1.7. It follows from Theorem 1.2 that if each function fi(x0; xi) is
a component-wise concave function of xi and x0, then both conv fi(x0; xi) and
conv(

Pm
1 fi(x0; xi)) are polyhedral functions. Thus, combining Theorems 1.2 and

1.4 gives the criterion sufficient to ensure (16) for functions with polyhedral convex
envelopes. In particular, let us consider the case of multilinear functions on Un.
It follows from Theorem 1.4 that if all the addends depend on the 1-dimensional
common variable x0, (for example, if

P
f(x0; xi) = x0x1x2 � x0x4x5 + x6x7)

then the standard approach (4) leads to the convex envelope.

2. Convex Envelope Formula for Multilinear Functions

As was mentioned above, a lot of attention was devoted to linearization of the
multilinear functions f(x1; . . . ; xn) (1) on the unit hypercubeUn. Function (1) may
be defined as an affine function of each of its scalar arguments xi 2 U1 = [0; 1]
while all its other arguments are fixed, and Un = U1 � � � � � U1.

It seems reasonable to analyze the convex envelope properties for a straight-
forward generalization of the multilinear function (1) when we have a function
L(x1; . . . ; xn), which linearly depends on each of its vector arguments x1; . . . ; xn.

DEFINITION 2.1. Function L(x1; . . . ; xk) is said to be a general multilinear func-
tion if for each i = 1; . . . ; k function L(x0

1; . . . ; xi; . . . ; x0
k
) linearly depends on

vector xi provided that all the other k � 1 vector arguments are fixed?.
We will consider general multilinear functions L(x); x = fx1; . . . ; xkg defined

on the Cartesian product of convex polytopes: x 2 P = P1 � � � � � Pk; xi 2 Pi �
Rni ; i = 1; . . . ; k: As it was stated in the remark 1.3 above, in this case convPL(x)
is a polyhedral function??.

DEFINITION 2.2. Let L(x) be a general multilinear function defined on Rn1 �
� � � � Rnk . For the function L(x) and any given point � = f�1; . . . ; �kg : �i 2
Rni ; i = 1; . . . ; k the associated affine function L�(x) is defined by the following
expression:

L�(x) =
X

i=1;...;k

L(�1; . . . ; �i�1; xi; �i+1; . . . ; �k)� (k � 1)L(�) : (19)

For example, for monomial functionL(x) = x�1 . . .� xk and � = (1; . . . ; 1) function
L�(x) = x�11� � � �� 1 + � � � + 1� � � �� 1�xk � (k � 1)1� � � � 1 =

P
i xi � (k � 1).

If � = (0; . . . ; 0), function L�(x) = x�10 + � � � + 0�xk � (k � 1)�0 = 0 (see (2)
above).

? Thus, L(x0
1; . . . ; xi; . . . ; x0

n) is an affine function of xi; for example function L = x1 + x1x2 +

x1x2x3 is a general multilinear function.
?? In the case of an arbitrary polytope P it is not so: if, for example, L(x1; x2) = x1x2 and

P = fxj0 � x1 � x2 � 1; xi � 0g, convPL(x) is not polyhedral.
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THEOREM 2.1. Let L(x1; . . . ; xk) : P ! Rn be a general multilinear function
defined on the Cartesian product of convex polytopes: P = P1 � � � � � Pk, xi 2
Pi � Rni , i = 1; . . . ; k. Let � = (�1; . . . ; �k) be a vertex of P : �i 2 vertPi and for
the associated affine function (19) L�(x) fulfilled the inequality:

L�(x) � L(x)8x 2 vertP: (20)

Then affine function L�(x) is an element of the convPL(x).
Proof. We will show that both conditions (13) and (14) of Lemma 1.1 are

fulfilled in this theorem. Condition (14) is equivalent to (20). To prove (13), let
us define polytope S as a convex envelope of all points x = (x1; . . . ; xk) 2 P ,
which have k� 1 components equal to the corresponding components of the point
� = (�1; . . . ; �k), i.e.

S = convf(�1; . . . ; �k); (x1; �2; . . . ; �k); . . . ;

(�1; . . . ; �k�1; xk)jxi 2 Pi; i = 1; . . . ; kg

The set S is an
P

ni-dimensional polytope, and its vertices are: (�1; . . . ; �k),
(�1; . . . ; �k); . . . ; (�1; . . . ; �k) where �i 2 vertPi. To check the equality (13) it
is sufficient to show that L�(x) = L(x)8x 2 vertS. If we calculate L(x) for
x = (�1; . . . ; �i�1; �i; �i�1; . . . ; �k) we will see after collecting the similar terms
that L�(x) = (i� 1)L(�) + L(x) + (k � i)L(�)� (k � 1)L(�) = L(x). �

REMARK 2.1. It is easy to see that both convex envelope formulas (2) and (3)
may be considered as particular cases of Theorem 2.1. For example, for the case
of multilinear function L(x) = �x�1 . . .� xk if � = f�j�j = 1; j 6= i; j = 1; . . . ; k
and �i = 0g the associated affine function L�(x) = �xi which is exactly the i-th
element of the convUnL(x) (see (3)).

The first and the last elements of the convUn

P
i>j xixj defined with (6) may

be also considered as associated affine functions L�(x) and L�(x) corresponding
to the points � = f0; . . . ; 0g and � = f1; . . . ; 1g.

REMARK 2.2. The question arises: Is it true that convex envelopes of general
multilinear functions always contain elements which are associated affine functions
(defined by (19)). The answer is negative, as it follows from the following example
for the bilinear function L(x) = x1x2 + x2x3 � x1x3 on U 3. For each � 2 vertU 3

there exists another vertex, � such that L�(�) > L(�). For example, if � =

(1; 0; 1); L�(x) = �x1 + 2x2 � x3 + 1 > L(x) at x = (0; 1; 0).

In the case of the bilinear functions, when L(x) = x1Ax
2, P = P1 � P2, x1 2

P1; x
2 2 P2 if � = f�; �g: � 2 vertP1; � 2 vertP2, the associated affine function

L�(x) = �Ax2 + x1A� � �A�. In this case, the condition (20) which is necessary
and sufficient for the function L�(x) to be an element of the convPL(x) may be
rewritten in the equivalent form:

(x1 � �)A(x2 � �) � 0 8x1 2 P1; x2 2 P2 (21)
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For example, if (1) is a bilinear function and set N� = ;, then both the ‘mini-
mal’ (� = f0; . . . ; 0g) and the ‘maximal’ (� =”f1; . . . ; 1g) vertices generate the
associated affine functionsL�(x) andL�(x) which are elements of the convPL(x).
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