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Abstract. Convex envelopes of multilinear functions on a unit hypercube are polyhedral. Thiswell-
known fact makes the convex envelope approximation very useful in the linearization of non-linear
0-1 programming problems and in global bilinear optimization. This paper presents necessary and
sufficient conditions for a convex envelope to be a polyhedral function and illustrates how these
conditions may be used in constructing of convex envelopes. The main result of the paper isasimple
analytical formula, which defines some faces of the convex envelope of a multilinear function. This
formula proves to be a generalization of the well known convex envelope formula for multilinear
monomia functions.
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Introduction

A great deal of effort has been devoted to thefield of finding tight convex piecewise
linear approximation of multilinear functions, and in applying these approximations
within the context of nonlinear programming [1-10, 14, 16, 17]. Most of the
efforts were devoted to the case of multilinear functions (1) over the hypercube
Uumr=10,1™

f(:E) = Z 271 H L, (@)

JEN 1€l

wherelj C1,...,n;N =Ny UN_:a; >0Vj e Ny ando; < O0Vj € N_ and
[T means the product. It is a well known fact [2], that any 0—1 problem may be
rewritten in multilinear form, and, thus any opportunity to construct tighter linear
underestimates™ of multilinear functions may lead to more effective algorithmsin
global optimization of 0—1 problems. In addition, linear underestimating functions
are of primary importancein global nonconvex bilinear programming [1,10,14,17].

* A previous version of this paper was presented at XV Int. Symposium on Mathematical
Programming.

** Function ¥(z) is said to be alinear (or polyhedral) underestimate of function f(z) on set P
if f(z) > ¥(z)Vz € Pand ¥(z) is made of afinite number of affine functions hj(z) : ¥(z) =
max{h;(z)|j =1,...J}.
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The most common method of linearization of multilinear functions is based
on the convex envelope* formula for the simplest monomial functions ¢(z) =
xi - xn and —p(z) onU™:

convip(z) = max {O, d ozi—n+ 1} , 2)
conv{—y(x)} = max{—=z;li =1,...,n}. (3)

Thus, in ‘standard linearization’ f°(z) (asit was called in [4,9]) each monomial
termin (1) is changed by the corresponding envelope (2) or (3):

fs(x) = Z a;j max{O, Z Tj— |Ij — 1|} + Z a; max{—xj|j € Ij}

JEN, iENy JEN-
4

Unfortunately, the standard approach often leads to very poor approximation and,
in addition, it needs many more hyperplanes than convex envelope function does.
Toillustrate this fact, let us consider the following simple function of n variables:

o(z) = Til 2. (5)
(5)/

Asit will be shown further, the convex envelope of this functionon U™ is:
n
convip(z) = max {O,kl C1 > mi— Colk =2,.. .,n} . (6)
1

The standard approach leads to the approximation:

©°(r) =05 Z max{0, z; + z; — 1} . (7
i#]

The precise error bounds for these two approaches are

max{¢(z) — ¢*(z)|z € U" < (n® —n)/8,

max{y(z) — convp(x)|z € U" < (n —1)/8.

* Convex envelope convp ¥ () of afunction ¥(x) on a closed convex set P is, by definition,
the tightest convex underestimating function of ¥(x) on P [15]. Convex envelope is said to be
a polyhedral function [15] if it is made of a finite set of lower bounding affine functions h; (z) :
convp¥(z) = max{h;(z)|j = 1,...J}. Wewill refer to each functions h; () fromwhich the convex
envelope is made of as to elements of convex envelope: i.e. affine function h(x) is an element of
convp W () if there exists an open set O C dom¥ such that h(z) = convp ¥ (z)Vz € O.
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Thus, the standard approach leads to poorer approximation and, at the same
time, it needs many more hyperplanes for its realization as compared to convex
envelope*.

In the case of bilinear programming problems, there exists another very impor-
tant reason for using convex envelopesin branch and bound type methods. Let P be
ahyperparallelepiped and conv,, ¥ () has been found. L et in the branch-and-bound
algorithm the set P be divided into subsets Q and R with inequalities z; > «; and
a; > x; respectively. In this case the knowledge of conv, ¥ (z) alows easily to
obtain the functions convg ¥ (z) and conv, ¥ (x), because all the elements of both
convg¥(z) and convp ¥ (z) may be obtained from the elements of convp¥(z)
by linear transformation. Thus, the difficult problem of calculating the convex
envelope needs to be solved only once.

Unfortunately, finding the convex envelope of a multilinear function on a unit
hypercubeisaNP-hard problem [5] and convex envelopeitself may be made of an
extremely large number of elements™. Nevertheless, as the example above illus-
trates, the use of convex envelopes may give significant benefits both in accuracy
and in the number of linear functions.

In this paper we will consider the following topics:

1. Thenecessary and sufficient conditionsfor the polyhedrality of convex envelopes.
These conditions may be helpful to check if a polyhedral function coincides with
the convex envelope. In particular, 1. Crama in his recent paper [4] analyzed situ-
ations when the standard approach leads to the convex envelopes for multilinear
0-1functionson U™. Our results generalize his main result for the case of arbitrary
multilinear functions on arbitrary convex polytope.

2. An analytical formula, which sometimes help to obtain elements of convex
envelope of general multilinear functions. In particular, (2) and (3) may be easily
obtained from this formula.

1. Necessary and Sufficient Conditions of Polyhedrality of Convex Envelope

Let f(z) be alower semicontinuous function on a compact polytope P C R™. For
the sake of convenience, in this section we will assume that f(z) < coVz € P,
and f(z) = coVz & P.

It may be helpful to use convp f(z) to linearize some nonlinear function f(x)
only in the case, when convp f (x) is a polyhedral function, i.e. when convp f ()
is made of afinite set of affinefunctions;(z): convp f (z) = max{h;(z)|j € J}.

Being apolyhedral function, convp f () may be defined by its values at afinite
set of points, z € P. Onthe other hand, by definition, h;(z) < f(z) Vo € P andit
isaways possible to consider only such functions 4; which coincide with f () in

* Note, that the first-level of recently introduced reformulation-linearization approach [17] aso
leads to approximation ¢* for function (5), while higher level approximations from this methods can
lead to tighter envelopes.

** In fact, even much more simple problems of minimization of a bilinear function with one
negative eigenvalue prove to be NP-hard [13].
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Figure1.1. Graph of afunctionwith apolyhedral convex envelope, X (f) = vertP = z1Uzo.

a least n + 1 affinely independent points of P. Thus, the question arises: how to
determine the minimal (by inclusion) finite subset X (f) C P so that convp f ()
would be completely defined by itsvalues f(z), at x € X (f)?

It follows from the Caratheodory’s theorem, that f(x) = convp f(z) at each
vertex 2 of polytope P (from now on we denote the set of all vertices as vertP).
Thus, it is natural to analyze such sets X (f) which contain vertP. The main
result of this section is that for smooth functions which have polyhedral convex
envelopes, vertP = X (f), and, hence convp f (x) of a smooth function f(x) on
a polytope P is completely defined by the values of this function at the extreme
points of this polytope.

Now let us introduce some definitions; as usual, if ¢ is a real-valued function
v x — R", epi(p) denotesits epigraph:

epi(p) ={(z,2)|z > p(x),z € dom(y)}, where dom(p) = {z|p(z) < oo}.

DEFINITION 1.1. Let f(z) be a rea valued lower semicontinuous function,
defined on a convex set P, dom(f) = P. Set X(f) is said to be a generating
set of this function, if

X(f) = {zl(z, f(2)) € vert(epi(convp f(z))} (8)

Thus, the generating set of a function f(x) is the set of al x-coordinates of all
vertices of the epigraph of the convex envelope of this function.

To illustrate the difference in generating sets of smooth functions which have
polyhedral and non-polyhedral convex envelopes, let us consider a picture for the
1-dimensional case (both the convex envel opefunctions and the generating setsare
typed in bold). As one can see from Figure 1.1, the generating set of the function,
which has a polyhedral convex envelope coincides with the vertP = z1 U 2.
In contrast with this, the nonpolyhedral convex envelope of smooth function has
smooth nonlinear parts and its generating set contains the nonempty open subset
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Figure 1.2. Graph of a function with nonpolyhedral convex envelope, X(f) = X1 U za;
intX1 75 0

X1 (seeFigurel.2). Thesameistrueinthe general caseasit followsfrom Theorem
1.1

DEFINITION 1.2. Function f : P — R™ issaid to be continuously differentiable
on convex polytope P if:

1. f(x) isacontinuous function on P.

2.foreachz € P\vertP andeach F, —thehighest dimensional faceof P containing
z, function f (x) iscontinuously differentiable onri F,, (where symbol ri() denotes
therelative interior of set () [15]).

THEOREM 1.1. Let function f(z) be continuously differentiable on a convex
compact polytope P. The convex envelope of this function on P is a polyhedral
function if and only if its generating set X (f) coincides with the set of vertices of
P:

X(f) = vertP 9

REMARK 1.1. Because of convp f(z) = f(z)Vz € vertP it is possible to give
another equivalent formulation of the theorem. Let us define function f*° such
that f°°(z) = f(z) if z € vertP and f>°(x) = oo otherwise. Thus, the necessary
and sufficient condition of the polyhedrality of the function convp f () (9) may be
rewritten in the form:

convp f(z) = convp f*(xz) Vx € P (10)
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where convp f°°(z) denotes the convex envelopes of the function f°°(x). The
equivalence of (9) and (10) follows from the self-evident fact that the generating
set of f°° coincideswith thevertP : X (f°°) = vertP.

Proof. The sufficiency isevident from the finiteness of the set of vertices of the
polytope P.

To prove the necessity, let us assume the opposite. In this case there exists
20 € X (f)\vertP. Let us consider first the case when z° is an internal point of
P: 29 € intP. Since z° belongs to the generating set but is not a vertex, there
exists m > 1 different elements of convp f (), Ha, ..., H,, such that H;(z) =
(hi,z — 29 + f(2°) Vi = 1,...,m; ({v,u) denotes scalar product of the vectors
v, u) By definition of convex envelope, H;(z) < f(z)Vz € P, Vi. Thus, each H;
i=1,...,m isasupport hyperplane and h; is a subgradient of the function f(z)
at 2°. Because f (z) isadifferentiable function at z° its subgradients must coincide
withitsgradient [12]: i.e. hy = - - - = hy,, = Of (z0)/0z. Thisequality contradicts
to the fact that all H;(z) are different.

To complete the proof let us show that the same considerations are true in the
casewhen z0 ¢ intP. In this caselet us consider F —the face of minimal dimension
containing z° : z° € riF. Let us consider also the function f defined on aff(ri F')
— the affine hull of riF' : fr(z) = f(z)Vz € aff(riF’). All the conditions of
the theorem are fulfilled for fr instead of f, and for the polytope F' instead of
P and, besides, convp f(z) = convg fr(z), Y € F*. Using this we can apply
the speculation mentioned above to the polytope F and the function f defined
in the space aff(riF), and to the point z°, which is an interior point of F in the
aff(ri F'). Thus, we obtain the contradiction in the case, when z0 ¢ intP as well.
This contradiction completes the proof of the theorem. O

One aspect which makes finding the convex envelope hard is that the convex
envelope of the sum of functions is not always equal to the sum of the convex
envelopesof the addends (compare convp(x) and ¢* () for function (5)). Theorem
1.1 gives the criterion when the convex envelopes of the addends is equal to the
polyhedral convex envelope of their sum.

COROLLARY 1.1. Let functions f;(z) be continuously differentiable on convex
compact polytope P, dom(f;) = PVi =1,...,mand fo(z) = >.1" fi(z). Letthe
convex envelopes of all of these m functions { f;(z) }7~, and their sum fo(z) be
polyhedral. Then

convp <§: fi(x)> = i convp f;(x) (12)
1 1

* This equality follows from the Caratheodory’s theorem.



A CONVEX ENVELOPE FORMULA FOR MULTILINEAR FUNCTIONS 431

if and only if the generating set of > 7" convp f;(z) coincides with the set of
vertices of P:

X (i convp fi($)> = vertP. (12
1

REMARK 1.2. Corollary 1 givesageneralization of Crama’s criterion of the equi-
valence between the standard and the convex envelope approachesin linearization
of 0-1 multilinear function [4].

To use Corollary 1.1 one should check if the convex envelope of sum of the
functionsis a polyhedral one. The following statement gives a sufficient condition
of polyhedrality of the convex envelope.

THEOREM 1.2. Let f(x) be alower semicontinuous function on a compact poly-
tope P and for every point 2o which is not a vertex there exists a line [, such, that
f(x) is a concave function in a neighborhood of o on a segment (I, N P) and
xo € rilly N P]. Then convp f(z) is a polyhedral function and the equality (10) is
true.

Proof. Let us analyze the generating set X (f) of this function. Let there exist
zo € X(f)\vertP. In this case it is possible to find two other points z1,z; :
z1,22 € [l N P]land f(zo) > (f(z1) + f(22))/2, zo = (1 + z2)/2 because
f(z)isconcaveon [z1, z2]. Thus, (zo, f(z0)) & vert(epi(convp f)) and, asaresult

zo & X(f). O

REMARK 1.3. Let L : P — R! be a general multilinear function defined on
the Cartesian product of the polytopes, P = Pi,..., P, P, € R™ i.e. function
L(x%,...,zi,...2Y) islinear function of n;-dimensional vector z; if all the other
k — 1 vector arguments =2, . ..., 29 are fixed. It follows from the Theorem 1.2 that
convp L(x) isapolyhedral function. To prove this fact one can consider any line
lo = {z|z; = 29,5 # i@ o & vert(P) and o; = 2 + 1€}, where t € R,
¢ € F, C P, and F, being facet of P; which contains z0.

REMARK 1.4. Itisinteresting to notethat Theorem 1.2 may bereversed. Namely,
let f(z) be twice continuously differentiable on P. It is easy to prove that if
x € X(f) and F,, bethe biggest facet of P containingz : = € F,, thenthe Hessian
|10 f () /022|| must be nonnegatively definite on F,.

This simple fact may be very useful in constructing convex envelopes. In
particular, some formulas for the non-polyhedral convex envelopes presented in
[16] could be obtained using this idea. As another example, let us find convex
envelopeof f(z) = z§z2...zn, P = U™ If & > 1, thefunction f(x) ispositively
definite ontheonefaceof P : zp = --- = z, = landthus, X (f) = {z|0 < z1 <
Liz;=17=2,...,n}UvertU". The application of Caratheodory’'s theorem to
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X (f) leadsto the following formula[14]:

COﬂfo(:L‘) = (Xn: r; —n+ 1> / (Xn: T; —n+ 2)
i=1 =2

if ¥z; —n + 1> 0and convp f(x) = 0 otherwise.

-1

Thisformula coincides with (2) if o = 1.

REMARK 1.5. It should be noted that the function f () in the theorem need not
be continuous as well and Theorem 1.2 may be applied, for example, in the case
of fixed charge problem.

In the future we will need acriterion to check if a specific affine function h; ()
isan element of convp f ().

LEMMA 1.1. Let f(z) bea continuously differentiable function on n-dimensional
convex polytope P C P™, and convp f (z) be a polyhedral function. Let i(z) be
an affine function and there exist n + 1 linearly independent verticesof P : §;,1 =
1,...n+ 1lsuchthat

h(&)=r(&), i1=1...,n+1 (13)
and
h(z) < f(z), Vz € vertP (14)
then h(z) is an element of the convp f(z) and h(z) = convsf(z) = convp f(z)
Vz € S,whereS = conv{¢;|i = 1,...,n+ 1}.
Proof. Lemma 1.1 follows immediately from Caratheodory’s theorem and

equality (10). More specificaly, let z° € S. From Caratheodory’s theorem we
have:

n+1 ) n+1 )
convp f(z°) = min {Z aif (%) |20 = Z a;z’,
i=1 =1

n+1 )
> aj=1,2" € P,a; >0, Vi:l,...,n+l} .
=1
(15)
It follows from (10) that the minimum is achieved at some vertices of P: there
exist n + 1 points7)’ € vertP and nonnegative o so that
n+1

convpf(z°) =Y aif(n").

i=1
Because h(x) is an affine function,
n+1

h(z°) =) aih(n')

i=1



A CONVEX ENVELOPE FORMULA FOR MULTILINEAR FUNCTIONS 433

and it follows from (14) that h(z°) < convp f(z°) Vz® € P. On the other hand,
because of z° € S, there exists a; > 0 : Y oy = 1,2° = 3 o&;. Thus,
h(xo) = h(z Ozzfz) = Za,h(fl) = Zalf(fz) > COﬂfo(:EO) Va0 e S, and thus,
h(z®) = convp f(z0). O

Lemma 1.1 provides away to check if a specific affine function is an element of
the convex envelope. For example, it is easy to check that each function Ay (z) =
k-1C1 > 1 z; — C> from (6) satisfies al conditions of the lemma and, thusiit is
an element of convy (). The following statement gives a criterion of the equality
of apolyhedral function to a convex envelope of agiven function.

THEOREM 1.3. Let function f(z) be continuously differentiable on convex com-
pact polytope P and its convex envelope convp f(z) be a polyhedral function.
Let there exist a collection of m affine function h;(z) so that each function
h; fills the conditions of Lemma 1.1. Then function convp f(x) coincides with
P(z) = max{h;(z)li =1,...,m;z € P}, ¢(x) = coVz ¢ P if and only if: «)
The generating set of the function () coincides with vertP. 3) For each vertex
¢ € vertPthereexistsi € {1,...,m} suchthat h;(¢) = f(¢).

Proof. The necessary part of the theorem is self-evident. To prove the suf-
ficiency, note that it follows from inequality (14) and the condition ‘g’ that
P(&) = f(€) V€ € vertP. From condition ‘' of the theorem and equality (10) one
can concludethat vert(epi(v)) = vert(epi(convp(f))). Becauseany closed convex
set is completely defined by its extreme points, ¢ (z) = convp f(z) Ve € P. O

Now we will use Theorem 1.3 to prove (6). Let us consider the following function
oNu” () = Yi<jiccjmen Til-- - Tjm Where 1 < m < n. Wewill prove
that: - -

CONVi,, () = max {o,k_lcml Z x; — (m — 1) Cp|k =m,.. .,n} .
1

Note, that this formula coincides with (6) if m = 2, because p2(x) = ¢(x) by
definition. We will check the condition of Lemma 1.1 for the elements of convy,,,:
hm]_(J?) =0; hk(x) =rp—1Cm_1 2711 i — (m — 1)ka where k = m,...,n. Let
x € vertU™ and n, = Y z;. Because hi(z) = ny o_1 Cpim1 — (m — 1)Cyy
and o, () = 1, Cm, hi(z) < p(z) ifng <k —10rny, >k+ 1 1fn, =kor
ny =k — 1, hg(x) = pm(x) and it is easy to check that there are n + 1 linearly
independent points among these vertices. It follows also from this consideration
that condition ‘5’ is fulfilled. To check condition ‘o’ we prove that any system
of equations: hy(z) = hy(z),z; = 1,2; = 0;k,l,4,5 € 1,...,n may have only
solutionsmade of O'sand 1's. After collecting similar termswewill have only one
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eguation y_ x; = n, and al the other n,, — 1 equationswill be of the form x; = 1
orz; =0. O

Corollary 1.1 gives ageneral criterion of when the standard approach |eads to the
preciseresult. But, sometimesit isdifficult to check if the condition (12) isfulfilled.
Thefollowing Theorem 1.4 gives a condition sufficient to establish that the convex
envelope of the sum of functions is equal to the sum of the convex envelopes of
the addends.

THEOREM 1.4. Let P bea Cartesian product of polytopes, P = Py x Py X ... Py,
P; € R",andlet f;(xo, z;) beacontinuousfunction definedon Py x P; i = 1, ...k.
If each f;(xo, z;) isaconcave function of zo when z; isfixed and Py isa simplex*,
then

m

convp <Z fi(xo,aci)> = i conv f; (o, ;) - (16)
1

1

Proof. Let zg € Py and zg, enumeratesthe verticesof Py, v = 1,...,n9+ 1.
There exist nonnegative values o, > 0 : >, awzo, = z0;>., & = 1 and
vector o = {«, } is uniquely determined by the vertices {xq, }. Using concavity
of fi(xo,x;) Of xo, it iseasy to prove that:

no+1

convf;(zo, z;) = »_ o0, CONVfi(zoy, ;) . (17)
0

On the other hand, >°7" fi(xo, ;) is a convex function of zg as well, and as a
result:

m no+1 m
convp (Z fZ (J?o,:L‘Z')) = Z (o' ZCOI’]VfZ'(:L‘Qy,J?i) . (18)
1 0 1
Because f;(zo,, ;) are separable functions, conv(>.1" fi(zov, i) = X1

conv f;(zov, ;) [10]. Thus, summation (17) over 7 leadsto the equality (18). O

REMARK 1.6. Theorem 1.4 generalizes awell known results [10] giving a con-
dition sufficient to ensure that the convex envelope of a set of functions equals
to the sum of their convex envelopes in the separable case. In the separable case
function f;(xo, z;) depend only on z; and not on z. Note, that the requirement
that Py be asimplex is essential in this proof, and the conclusion does not follow
if vert Po| > no + 1. In dlightly different form this theorem was first presented in
[14].

*|.e. the number of vertices of the polytope P isno + 1.



A CONVEX ENVELOPE FORMULA FOR MULTILINEAR FUNCTIONS 435

REMARK 1.7. It follows from Theorem 1.2 that if each function f;(zo,z;) is
a component-wise concave function of z; and o, then both conv f;(xo, z;) and
conv(> 1" fi(xo,z;)) arepolyhedral functions. Thus, combining Theorems 1.2 and
1.4 givesthecriterion sufficient to ensure (16) for functionswith polyhedral convex
envelopes. In particular, let us consider the case of multilinear functions on U™.
It follows from Theorem 1.4 that if al the addends depend on the 1-dimensional
common variable zo, (for example, if > f(zo,2;) = zor122 — ToLars + Tex7)
then the standard approach (4) leads to the convex envel ope.

2. Convex Envelope Formulafor Multilinear Functions

As was mentioned above, a lot of attention was devoted to linearization of the
multilinear functions f (z1, . . ., z,,) (1) ontheunit hypercube U™. Function (1) may
be defined as an affine function of each of its scalar arguments z; € U = [0, 1]
while all its other arguments arefixed, and U™ = UL x --- x UL,

It seems reasonable to analyze the convex envelope properties for a straight-
forward generalization of the multilinear function (1) when we have a function
L(z1,...,z,), whichlinearly depends on each of its vector arguments z1, . .., .

DEFINITION 2.1. Function L(z1, . .., zj) issaid to be ageneral multilinear func-
tion if for each i = 1,...,k function L(z3,...,z;,...,2%) linearly depends on
vector z; provided that all the other k& — 1 vector arguments are fixed*.

We will consider general multilinear functions L(z), z = {z1, ...,z } defined
on the Cartesian product of convex polytopes. x € P =Py X --- X P, z; € P; C
R"™ i =1,..., k. Asitwasstated in theremark 1.3 above, in this case convp L(x)
isapolyhedral function**.

DEFINITION 2.2. Let L(x) be a general multilinear function defined on R™ x
--+- x R™. For the function L(z) and any given point £ = {&1,...,&} 1 & €
R™, i =1,...,k the associated affine function L¢(x) is defined by the following
expression:

Le(x) = > L1, 61,20, 8, -, &) — (B — DL(E). (19)

i=1,....k

For example, for monomial function L(z) = =3 ...* zyand{ = (1,..., 1) function
Le(x) = w3* - 14 -+ 1 Ty — (k- 1)1 1 =32 — (K —1).
If v = (0,...,0), function L, (z) = 30+ --- + 0"z, — (kK — 1)*0 = 0 (see (2)
above).

* Thus, L(2Y,...,zi,...,2%) isan affine function of x;; for example function L = z1 + z122 +
r1z223 1ISageneral multilinear function.
** In the case of an arbitrary polytope P it is not so: if, for example, L(z1,z2) = zix2 and
P ={z|0<z1 <z <1z >0}, convp L(z) isnot polyhedral.
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THEOREM 2.1. Let L(z1,...,zx) : P — R™ be a general multilinear function
defined on the Cartesian product of convex polytopes: P = Py X -+- X Py, z; €
P,C R",i=1,...,k.Let{ = (&1,...,&;) beavertexof P: &; € vertP; and for
the associated affine function (19) L, («) fulfilled the inequality:

L¢(x) < L(z) Vo € vertP. (20)

Then affine function L¢(x) is an element of the convp L(z).

Proof. We will show that both conditions (13) and (14) of Lemma 1.1 are
fulfilled in this theorem. Condition (14) is equivaent to (20). To prove (13), let
us define polytope S as a convex envelope of al points x = (z1,...,2;) € P,
which have k — 1 components equal to the corresponding components of the point

§= (1. &) ik

S =conv{(&y, ..., &k); (21, €2, -, &k
(fla"'agk—laa:k) Ty G-Piai :177k}

The set S is an ) n;-dimensiona polytope, and its vertices are: (&1,...,&),
(my--y &)y ey (€1,...,m) Where m; € vertP;. To check the equality (13) it
is sufficient to show that L¢(x) = L(z)Vz € vertS. If we calculate L(x) for
x = (&1,..,&-1,m,&-1,..., &) we will see after collecting the similar terms
that Le(z) = (i — 1) L(€) + L) + (k —i)L(¢) — (k — DL() = L(z). O

REMARK 2.1. It is easy to see that both convex envelope formulas (2) and (3)
may be considered as particular cases of Theorem 2.1. For example, for the case
of multilinear function L(z) = —z3 .. 2, if E = {£|¢;, = 1,5 #4,5 =1,....k
and ¢; = 0} the associated affine function L¢(x) = —=; which is exactly the i-th
element of the convy- L(z) (see (3)).

The first and the last elements of the convyr 3°;- ; =iz, defined with (6) may
be also considered as associated affine functions L¢(x) and L, (x) corresponding
to thepoints¢ = {0,...,0}andn = {1,...,1}.

REMARK 2.2. The question arises: Is it true that convex envelopes of genera
multilinear functions always contain elementswhich are associated affine functions
(defined by (19)). The answer is negative, asit follows from the following example
for the bilinear function L(z) = x1x2 + zx3 — 2123 on U3, For each ¢ € vertU?
there exists another vertex, v such that L¢(v) > L(v). For example, if £ =
(1,0,1), Le(x) = —21 + 220 — 23+ 1> L(z) atz = (0,1,0).

In the case of the bilinear functions, when L(z) = z1A42%, P = Py x P, 21 €
Py,2? € P if ¢ = {n,v}: n € vertPy, v € vertP,, the associated affine function
Le¢(z) = nAz? + 11 Av — nAv. In this case, the condition (20) which is necessary
and sufficient for the function L¢(x) to be an element of the convp L(z) may be
rewritten in the equivalent form:

(x1— n)A(:zc2 —v)>0 Vi€ Py, > e Py (22)
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For example, if (1) is a bilinear function and set N = (), then both the ‘mini-

mal’

(¢ ={0,...,0}) and the ‘maximal’ (n ="{1,...,1}) vertices generate the

associated affine functions L¢ () and L, (x) which are elements of the convp L(x).
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